నెల్లూరు: మనుబోలు మండలం బద్వేలు క్రాస్రోడ్డు దగ్గర కారు బోల్తా, ముగ్గురికి గాయాలు|కర్నూలు: 16 వ రోజు జగన్ ప్రజా సంకల్ప యాత్ర|రంగారెడ్డి: మైలార్దేవ్పల్లిలో కింగ్స్ కాలనీలో ముస్తఫా అనే వ్యక్తిపై దుండగుల కాల్పులు|కడప: జగన్ సీఎం అయితే తన ఆస్తులు పెరుగుతాయి..చంద్రబాబు సీఎంగా ఉంటే ప్రజల ఆస్తులు పెరుగుతాయి: మంత్రి సోమిరెడ్డి|సిరిసిల్ల: అన్ని గ్రామాల్లో కేసీఆర్ గ్రామీణ ప్రగతి ప్రాంగణాలు నిర్మిస్తాం: మంత్రి కేటీఆర్|హైదరాబాద్: బంజారాహిల్స్ పోలీస్ స్టేషన్లో యూసుఫ్గూడ కార్పొరేటర్ తమ్ముడిపై కేసు నమోదు|అమరావతి: చీఫ్విప్గా పల్లె రఘునాథరెడ్డి పేరు, శాసనమండలి చీఫ్ విప్గా పయ్యావుల కేశవ్ పేరు ఖరారు|అనంతపురం: జెట్ ఎయిర్వేస్లో ఉద్యోగాల పేరుతో మోసం, రూ.14 లక్షలు వసూలు చేసిన యువకుడు|ఢిల్లీ: సరి, బేసి విధానానికి ఎన్జీటీ గ్రీన్సిగ్నల్, కాలుష్యం పెరిగినప్పుడు అమలు చేసుకోవచ్చన్న ఎన్జీటీ|శ్రీకాకుళం: వైసీపీ ఎమ్మెల్యేల గొంతు నొక్కుతున్నారు.. నిరసనగా అసెంబ్లీని బహిష్కరించాం: వైసీపీ నేత ధర్మాన
ఆంధ్రజ్యోతి హోం
2020 దశాబ్దంలో జాబ్ కొట్టాలంటే.. ఈ స్కిల్స్ ఉండాల్సిందే..! |
సాఫ్ట్వేర్ని మించిన ఉద్యోగాలు ఇవీ...! |
వెరైటీ జాబ్స్.. లక్షల్లో జీతాలు..! |
కొత్త కెరీర్.. జాబ్ పక్కా.. ప్రారంభంలోనే లక్షకు పైగానే జీతం..! |
లక్షల జీతాలిచ్చే.. ఉద్యోగాలు ఇవే..! |
ఉపాధి కోర్సులు.. కొలువులకు మెట్లు |
Subjects Menu
S.S.C
INTERMEDIATE - I
INTERMEDIATE - II
CBSE X
CBSE XI
CBSE XII
ICSE X
ICSE XI
ICSE XII
EAMCET (Engg)
EAMCET (MEDICAL)
IIT-JEE(Main)
IIT-JEE(Advanced)
COMPUTER COURSES
Home
CBSE XI
MATHEMATICS
Others
Select
S.S.C
INTERMEDIATE - I
INTERMEDIATE - II
CBSE X
CBSE XI
CBSE XII
ICSE X
ICSE XI
ICSE XII
EAMCET (Engg)
EAMCET (MEDICAL)
IIT-JEE(Main)
IIT-JEE(Advanced)
COMPUTER COURSES
CBSE XI
MATHEMATICS
PHYSICS
CHEMISTRY
BIOLOGY
CBSE XI
>
MATHEMATICS
2.Relations & Functions
2.1. Introduction
2.2. Cartesian Product of Sets
2.2. Cartesian Product of Sets
2.2. Cartesian Product of Sets
2.3. Relations
2.3. Relations
2.3. Relations
2.3. Relations
2.3. Relations
2.4. Functions
2.4.1. Some Functions and their Graphs
i- Identity Function
ii- Constant Function
iii- Polynomial Function
iv- Rational Function
v- The Modulus Function
vi- Signum Function
vii- Greatest Integer Function
2.4.2. Algebra of Real Numbers
2.4.2. Algebra of Real Numbers
2.4.2. Algebra of Real Numbers
i- Addition of Two Real Numbers
ii- Subtraction of Real Function from Another
iii- Multiplication by a Scalar
iv- Multiplication of Two Real Functions
v- Quotient of Two Real Functions
1.Sets
1.1. Introduction
1.2. Sets and their Representation
1.2. Sets and their Representation
1.2. Sets and their Representation
1.3. The Empty Set
1.4. Finite and Infinite Sets
1.5. Equal Sets
1.6. Sub-Sets
1.6.1. Subsets of Set of Real Numbers
1.6.2. Intervals as Subsets of R
1.7. Power Set
1.8. Universal Set
1.9. Venn Diagrams
1.9. Venn Diagrams
1.9. Venn Diagrams
1.10. Operations of Sets
1.10. Operations of Sets
1.10. Operations of Sets
1.10.1. Union of Sets
1.10.2. Intersection of Sets
1.10.3. Difference of Sets
1.11. Compliment of a Set
1.12. Practical Problems on Union and Intersection of Two Sets
3.Trigonometric Functions
3.1. Introduction
3.1. Introduction
3.2. Angles
3.2.1. Degree Measurement
3.2.2. Radian Measure
3.2.3. Relation Between Radian and Real Numbers
3.2.4. Relation between Degree and Radian
3.3 Trigonometric Functions
3.3 Trigonometric Functions
3.3 Trigonometric Functions
3.3.1. Sign of Trigonometric Functions
3.3.2. Domain and Range of Trigonometric Functions
3.4. Trigonometric Functions of Sum and Difference of Two Angles
3.5. Trigonometric Equations
3.5. Trigonometric Equations
3.5. Trigonometric Equations
3.5. Trigonometric Equations
3.5. Trigonometric Equations
4.Principle of Mathematical Induction
4.1. Introduction
4.2. Motivation
4.3. The Principle of Mathematical Induction
4.3. The Principle of Mathematical Induction
4.3. The Principle of Mathematical Induction
4.3. The Principle of Mathematical Induction
5.Complex Numbers and Quadratic Equations
5.1. Introduction
5.2. Complex Numbers
5.3. Algebra of Complex Numbers
5.3.1. Addition of Two Complex Numbers
5.3.2. Difference of Two Complex Numbers
5.3.3. Multiplication of Two Complex Numbers
5.3.4. Division of Two Complex Numbers
5.3.5. Power of I
5.3.6. The Square Roots of Negative Real Number
5.3.6. The Square Roots of Negative Real Number
5.3.6. The Square Roots of Negative Real Number
5.3.7. Identities
5.4. The Modulus and Conjugate of a Complex Number
5.5. Argand Plane and Polar Representation
5.5.1. Polar Representation of a Complex Number
5.6. Quadratic Equations
5.6. Quadratic Equations
5.6. Quadratic Equations
6.Linear Inequalities
6.1. Introduction
6.2. Inequalities
6.3. Algebra Solutions of Linear Inequalities in One Variable and their Graphical Representation
6.4. Graphical Solution of Linear Inequalities in Two Variables
6.5. Solution of System of Linear Inequalities in Two Variables
6.5. Solution of System of Linear Inequalities in Two Variables
6.5. Solution of System of Linear Inequalities in Two Variables
8.Binomial Theorem
8.1. Introduction
8.1. Introduction
8.2. Binomial Theorem for Positive Integral Indices
8.2. Binomial Theorem for Positive Integral Indices
8.2. Binomial Theorem for Positive Integral Indices
8.2.1. Binomial Theorem for any Positive Integral n
8.2.2. Some Special Cases
8.3. General and Middle Terms
8.3. General and Middle Terms
8.3. General and Middle Terms
8.3. General and Middle Terms
8.3. General and Middle Terms
8.3. General and Middle Terms
8.3. General and Middle Terms
8.3. General and Middle Terms
8.3. General and Middle Terms
9.Sequence and Series
9.1. Introduction
9.2. Sequences
9.3. Series
9.4. Arithmetic Progression
9.4. Arithmetic Progression
9.4. Arithmetic Progression
9.4. Arithmetic Progression
9.4.1. Arithmetic Mean
9.4.1. Arithmetic Mean
9.4.1. Arithmetic Mean
9.5. Geometric Progression
9.5. Geometric Progression
9.5. Geometric Progression
9.5. Geometric Progression
9.5. Geometric Progression
9.5.1. General Term of GP
9.5.2. Sum to n Terms of a GP
9.5.3. Geometric Mean
9.5.3. Geometric Mean
9.5.3. Geometric Mean
9.6. Relationship between A.M. And G.M.
9.6. Relationship between A.M. And G.M.
9.6. Relationship between A.M. And G.M.
9.7. Sum to n Terms of Special Series
10.Straight Lines
10.1. Introduction
10.1. Introduction
10.1. Introduction
10.2. Slope of a Line
10.2. Slope of a Line
10.2. Slope of a Line
10.2.1. Slope of a Line when coordinates any two points on the Line Given
10.2.2. Conditions for Parallelism and Perpendicularity of Lines in Terms of their Slopes
10.2.3. Angle between Two Lines
10.2.3. Angle between Two Lines
10.2.3. Angle between Two Lines
10.2.4. Collinearity of Three Points
10.2.4. Collinearity of Three Points
10.3. Various Forms of the Equation of a Line
10.3.1. Horizontal and Vertical Lines
10.3.2. Point-Slope Form
10.3.3. Two Point Form
10.3.4. Slope-Intercept Form
10.3.5. Intercept Form
10.3.6. Normal Form
10.4. General Equation of a Line
10.4.1. Different Forms
10.5. Distance of Point From a Line
10.5. Distance of Point From a Line
10.5. Distance of Point From a Line
10.5.1. Distance between Two Parallel Lines
10.5.1. Distance between Two Parallel Lines
10.5.1. Distance between Two Parallel Lines
11. Conic Sections
1.1. Introduction
11.2. Sections of a Cone
11.2.1. Circle, Ellipse, Parabola and Hyperbola
11.2.2. Degenerated Conic Sections
11.3. Circle
11.3. Circle
11.3. Circle
11.4. Parabola
11.4.1. Standard Equations of Parabola
11.4.1. Standard Equations of Parabola
11.4.1. Standard Equations of Parabola
11.4.2. Latus Rectum
11.5. Ellipse
11.5.1. Relationship between Semi-Major Axis, Semi-Minor Axis and the Distance of the Focus from the Center of the Ellipse
11.5.2. Special Cases of an Ellipse
11.5.3. Eccentricity
11.5.4. Standard Equations of an Ellipse
11.5..5. Latus Rectum
11.6. Hyperbola
11.6.1. Eccentricity
11.6.2. Standard Equation of Hyperbola
11.6.3. Latus Rectum
12.Introduction to Three Dimensional Geography
12.1. Introduction
12.2. Coordinate Axes and Coordinate Planes in Three Dimensional Space
12.3. Coordinate Point in Space
12.4. Distance between Two Points
12.5. Section Formula
13.Limits and Derivatives
13.1. Introduction
13.2. Intuitive Idea of Derivatives
13.3. Limits
13.3. Limits
13.3. Limits
13.3.1. Algebra of Limits
13.3.2. Limits of Polynomials and Rational Functions
13.4. Limits of Trigonometric Functions
13.5. Derivatives
13.5.1. Algebra of Derivative of Functions
13.5.2. Derivative of Polynomials and Trigonometric Functions
14.Mathematical Reasoning
14.1. Introduction
14.2. Statements
14.3. New Statements from Old
14.3.1. Negation of a Statement
14.3.2. Compound Statements
14.4. Special Words / Phrases
14.4.1. The Word “And”
14.4.2. The Word “or”
14.4.3. Quantifiers
14.5. Implications
14.5.1. Contra positive and Converse
14.6. Validating Statements
14.6.1. By Contradiction
15.Statistics
15.1. Introduction
15.2. Methods of Dispersion
15.3. Range
15.4. Mean Deviation
15.4.1. Mean Deviation for Ungrouped Data
15.4.2. Mean Deviation for Grouped Data
15.4.3. Limitations of Mean Deviation
15.5. Variance and Standard Deviation
15.5.1. Standard Deviation
15.5.2. Standard Deviation of a Discrete Frequency Distribution
15.5.3. Standard Deviation of a Continuous Frequency Distribution
15.5.4. Shortcut Method to Find Variance and Standard Deviation
15.6. Analysis of Frequency Distribution
15.6.1. Comparison of Two Frequency Distributions with Same Mean
16.Probability
16.1. Introduction
16.1. Introduction
16.1. Introduction
16.2. Random Experiments
16.2.1. Outcomes and Sample Space
16.3. Event
16.3.1. Occurrence of an Event
16.3.2. Types of Event
16.3.3. Algebra of Events
16.3.4. Mutually Exclusive Events
16.3.5. Exhaustive Events
16.4. Axiomatic Approach to Probability
16.4.1. Probability of an Event
16.4.2. Probabilities of Equally Likely Outcomes
16.4.3. Probability of the Event 'A or B'
16.4.4. Probability of Even 'Not A'