A. Plants (i) T. S of young dicot and monocot stem, T. S of young dicot and monocot root and V. S. of dicot and monocot leaf. Secondary growth in stem: brief idea of formation of secondary xylem and secondary phloem by cambium ring formation, annual rings. A. Plants (i) T. S of young dicot and monocot stem, T. S of young dicot and monocot root and V. S. of dicot and monocot leaf. Secondary growth in stem: brief idea of formation of secondary xylem and secondary phloem by cambium ring formation, annual rings. A. Plants (i) T. S of young dicot and monocot stem, T. S of young dicot and monocot root and V. S. of dicot and monocot leaf. Secondary growth in stem: brief idea of formation of secondary xylem and secondary phloem by cambium ring formation, annual rings. A. Plants (i) T. S of young dicot and monocot stem, T. S of young dicot and monocot root and V. S. of dicot and monocot leaf. Secondary growth in stem: brief idea of formation of secondary xylem and secondary phloem by cambium ring formation, annual rings. A. Plants (i) T. S of young dicot and monocot stem, T. S of young dicot and monocot root and V. S. of dicot and monocot leaf. Secondary growth in stem: brief idea of formation of secondary xylem and secondary phloem by cambium ring formation, annual rings. (ii) Absorption and movement of water in plants: diffusion, imbibition, osmosis, osmotic pressure, turgor pressure, wall pressure, water potential, diffusion pressure deficit. Mechanism of water absorption (active and passive absorption), root pressure, transpiration, transpiration pull theory for ascent of sap, mechanism of opening and closing of stomata (active potassium theory), guttation. (ii) Absorption and movement of water in plants: diffusion, imbibition, osmosis, osmotic pressure, turgor pressure, wall pressure, water potential, diffusion pressure deficit. Mechanism of water absorption (active and passive absorption), root pressure, transpiration, transpiration pull theory for ascent of sap, mechanism of opening and closing of stomata (active potassium theory), guttation. (ii) Absorption and movement of water in plants: diffusion, imbibition, osmosis, osmotic pressure, turgor pressure, wall pressure, water potential, diffusion pressure deficit. Mechanism of water absorption (active and passive absorption), root pressure, transpiration, transpiration pull theory for ascent of sap, mechanism of opening and closing of stomata (active potassium theory), guttation. (ii) Absorption and movement of water in plants: diffusion, imbibition, osmosis, osmotic pressure, turgor pressure, wall pressure, water potential, diffusion pressure deficit. Mechanism of water absorption (active and passive absorption), root pressure, transpiration, transpiration pull theory for ascent of sap, mechanism of opening and closing of stomata (active potassium theory), guttation. (ii) Absorption and movement of water in plants: diffusion, imbibition, osmosis, osmotic pressure, turgor pressure, wall pressure, water potential, diffusion pressure deficit. Mechanism of water absorption (active and passive absorption), root pressure, transpiration, transpiration pull theory for ascent of sap, mechanism of opening and closing of stomata (active potassium theory), guttation. (ii) Absorption and movement of water in plants: diffusion, imbibition, osmosis, osmotic pressure, turgor pressure, wall pressure, water potential, diffusion pressure deficit. Mechanism of water absorption (active and passive absorption), root pressure, transpiration, transpiration pull theory for ascent of sap, mechanism of opening and closing of stomata (active potassium theory), guttation. (ii) Absorption and movement of water in plants: diffusion, imbibition, osmosis, osmotic pressure, turgor pressure, wall pressure, water potential, diffusion pressure deficit. Mechanism of water absorption (active and passive absorption), root pressure, transpiration, transpiration pull theory for ascent of sap, mechanism of opening and closing of stomata (active potassium theory), guttation. (ii) Absorption and movement of water in plants: diffusion, imbibition, osmosis, osmotic pressure, turgor pressure, wall pressure, water potential, diffusion pressure deficit. Mechanism of water absorption (active and passive absorption), root pressure, transpiration, transpiration pull theory for ascent of sap, mechanism of opening and closing of stomata (active potassium theory), guttation. (ii) Absorption and movement of water in plants: diffusion, imbibition, osmosis, osmotic pressure, turgor pressure, wall pressure, water potential, diffusion pressure deficit. Mechanism of water absorption (active and passive absorption), root pressure, transpiration, transpiration pull theory for ascent of sap, mechanism of opening and closing of stomata (active potassium theory), guttation. (ii) Absorption and movement of water in plants: diffusion, imbibition, osmosis, osmotic pressure, turgor pressure, wall pressure, water potential, diffusion pressure deficit. Mechanism of water absorption (active and passive absorption), root pressure, transpiration, transpiration pull theory for ascent of sap, mechanism of opening and closing of stomata (active potassium theory), guttation. (ii) Absorption and movement of water in plants: diffusion, imbibition, osmosis, osmotic pressure, turgor pressure, wall pressure, water potential, diffusion pressure deficit. Mechanism of water absorption (active and passive absorption), root pressure, transpiration, transpiration pull theory for ascent of sap, mechanism of opening and closing of stomata (active potassium theory), guttation. (ii) Absorption and movement of water in plants: diffusion, imbibition, osmosis, osmotic pressure, turgor pressure, wall pressure, water potential, diffusion pressure deficit. Mechanism of water absorption (active and passive absorption), root pressure, transpiration, transpiration pull theory for ascent of sap, mechanism of opening and closing of stomata (active potassium theory), guttation. (ii) Absorption and movement of water in plants: diffusion, imbibition, osmosis, osmotic pressure, turgor pressure, wall pressure, water potential, diffusion pressure deficit. Mechanism of water absorption (active and passive absorption), root pressure, transpiration, transpiration pull theory for ascent of sap, mechanism of opening and closing of stomata (active potassium theory), guttation. (ii) Absorption and movement of water in plants: diffusion, imbibition, osmosis, osmotic pressure, turgor pressure, wall pressure, water potential, diffusion pressure deficit. Mechanism of water absorption (active and passive absorption), root pressure, transpiration, transpiration pull theory for ascent of sap, mechanism of opening and closing of stomata (active potassium theory), guttation. (ii) Absorption and movement of water in plants: diffusion, imbibition, osmosis, osmotic pressure, turgor pressure, wall pressure, water potential, diffusion pressure deficit. Mechanism of water absorption (active and passive absorption), root pressure, transpiration, transpiration pull theory for ascent of sap, mechanism of opening and closing of stomata (active potassium theory), guttation. (iii) Photosynthesis: ultra structure of chloroplast, photochemical and biosynthetic phases, absorption and action spectra, factors affecting photosynthesis, photophosphorylation; photorespiration, transport of solutes. (iii) Photosynthesis: ultra structure of chloroplast, photochemical and biosynthetic phases, absorption and action spectra, factors affecting photosynthesis, photophosphorylation; photorespiration, transport of solutes. (iii) Photosynthesis: ultra structure of chloroplast, photochemical and biosynthetic phases, absorption and action spectra, factors affecting photosynthesis, photophosphorylation; photorespiration, transport of solutes. (iii) Photosynthesis: ultra structure of chloroplast, photochemical and biosynthetic phases, absorption and action spectra, factors affecting photosynthesis, photophosphorylation; photorespiration, transport of solutes. (iii) Photosynthesis: ultra structure of chloroplast, photochemical and biosynthetic phases, absorption and action spectra, factors affecting photosynthesis, photophosphorylation; photorespiration, transport of solutes. (iii) Photosynthesis: ultra structure of chloroplast, photochemical and biosynthetic phases, absorption and action spectra, factors affecting photosynthesis, photophosphorylation; photorespiration, transport of solutes. (iii) Photosynthesis: ultra structure of chloroplast, photochemical and biosynthetic phases, absorption and action spectra, factors affecting photosynthesis, photophosphorylation; photorespiration, transport of solutes. (iii) Photosynthesis: ultra structure of chloroplast, photochemical and biosynthetic phases, absorption and action spectra, factors affecting photosynthesis, photophosphorylation; photorespiration, transport of solutes. (iii) Photosynthesis: ultra structure of chloroplast, photochemical and biosynthetic phases, absorption and action spectra, factors affecting photosynthesis, photophosphorylation; photorespiration, transport of solutes. (iii) Photosynthesis: ultra structure of chloroplast, photochemical and biosynthetic phases, absorption and action spectra, factors affecting photosynthesis, photophosphorylation; photorespiration, transport of solutes. (iv) Reproduction and development in angiosperms: vegetative reproduction, structure of a typical flower, types of inflorescence (racemose and cymose), sexual reproduction: development of male and female gametophytes, placentation, pollination, fertilisation (Amphimixis) and formation of endosperm, embryo, seed and fruits (broadly classified). Apomixis, Polyembryony, Parthenocarpy. Significance of seed and fruit formation. (iv) Reproduction and development in angiosperms: vegetative reproduction, structure of a typical flower, types of inflorescence (racemose and cymose), sexual reproduction: development of male and female gametophytes, placentation, pollination, fertilisation (Amphimixis) and formation of endosperm, embryo, seed and fruits (broadly classified). Apomixis, Polyembryony, Parthenocarpy. Significance of seed and fruit formation. (iv) Reproduction and development in angiosperms: vegetative reproduction, structure of a typical flower, types of inflorescence (racemose and cymose), sexual reproduction: development of male and female gametophytes, placentation, pollination, fertilisation (Amphimixis) and formation of endosperm, embryo, seed and fruits (broadly classified). Apomixis, Polyembryony, Parthenocarpy. Significance of seed and fruit formation. (iv) Reproduction and development in angiosperms: vegetative reproduction, structure of a typical flower, types of inflorescence (racemose and cymose), sexual reproduction: development of male and female gametophytes, placentation, pollination, fertilisation (Amphimixis) and formation of endosperm, embryo, seed and fruits (broadly classified). Apomixis, Polyembryony, Parthenocarpy. Significance of seed and fruit formation. (iv) Reproduction and development in angiosperms: vegetative reproduction, structure of a typical flower, types of inflorescence (racemose and cymose), sexual reproduction: development of male and female gametophytes, placentation, pollination, fertilisation (Amphimixis) and formation of endosperm, embryo, seed and fruits (broadly classified). Apomixis, Polyembryony, Parthenocarpy. Significance of seed and fruit formation. (iv) Reproduction and development in angiosperms: vegetative reproduction, structure of a typical flower, types of inflorescence (racemose and cymose), sexual reproduction: development of male and female gametophytes, placentation, pollination, fertilisation (Amphimixis) and formation of endosperm, embryo, seed and fruits (broadly classified). Apomixis, Polyembryony, Parthenocarpy. Significance of seed and fruit formation. (iv) Reproduction and development in angiosperms: vegetative reproduction, structure of a typical flower, types of inflorescence (racemose and cymose), sexual reproduction: development of male and female gametophytes, placentation, pollination, fertilisation (Amphimixis) and formation of endosperm, embryo, seed and fruits (broadly classified). Apomixis, Polyembryony, Parthenocarpy. Significance of seed and fruit formation. (iv) Reproduction and development in angiosperms: vegetative reproduction, structure of a typical flower, types of inflorescence (racemose and cymose), sexual reproduction: development of male and female gametophytes, placentation, pollination, fertilisation (Amphimixis) and formation of endosperm, embryo, seed and fruits (broadly classified). Apomixis, Polyembryony, Parthenocarpy. Significance of seed and fruit formation. (iv) Reproduction and development in angiosperms: vegetative reproduction, structure of a typical flower, types of inflorescence (racemose and cymose), sexual reproduction: development of male and female gametophytes, placentation, pollination, fertilisation (Amphimixis) and formation of endosperm, embryo, seed and fruits (broadly classified). Apomixis, Polyembryony, Parthenocarpy. Significance of seed and fruit formation. (iv) Reproduction and development in angiosperms: vegetative reproduction, structure of a typical flower, types of inflorescence (racemose and cymose), sexual reproduction: development of male and female gametophytes, placentation, pollination, fertilisation (Amphimixis) and formation of endosperm, embryo, seed and fruits (broadly classified). Apomixis, Polyembryony, Parthenocarpy. Significance of seed and fruit formation. (iv) Reproduction and development in angiosperms: vegetative reproduction, structure of a typical flower, types of inflorescence (racemose and cymose), sexual reproduction: development of male and female gametophytes, placentation, pollination, fertilisation (Amphimixis) and formation of endosperm, embryo, seed and fruits (broadly classified). Apomixis, Polyembryony, Parthenocarpy. Significance of seed and fruit formation. (v) Differentiation and organ formation. (v) Differentiation and organ formation. (v) Differentiation and organ formation. B. Animals - Reproduction (human): internal structure of human testis and ovary, menstrual cycle, gametogenesis, embryonic development in mammals (up to three germ layers). Medical termination of pregnancy, infertility. Amniocentesis. Assisted reproductive technologies. B. Animals - Reproduction (human): internal structure of human testis and ovary, menstrual cycle, gametogenesis, embryonic development in mammals (up to three germ layers). Medical termination of pregnancy, infertility. Amniocentesis. Assisted reproductive technologies. B. Animals - Reproduction (human): internal structure of human testis and ovary, menstrual cycle, gametogenesis, embryonic development in mammals (up to three germ layers). Medical termination of pregnancy, infertility. Amniocentesis. Assisted reproductive technologies. B. Animals - Reproduction (human): internal structure of human testis and ovary, menstrual cycle, gametogenesis, embryonic development in mammals (up to three germ layers). Medical termination of pregnancy, infertility. Amniocentesis. Assisted reproductive technologies. B. Animals - Reproduction (human): internal structure of human testis and ovary, menstrual cycle, gametogenesis, embryonic development in mammals (up to three germ layers). Medical termination of pregnancy, infertility. Amniocentesis. Assisted reproductive technologies. B. Animals - Reproduction (human): internal structure of human testis and ovary, menstrual cycle, gametogenesis, embryonic development in mammals (up to three germ layers). Medical termination of pregnancy, infertility. Amniocentesis. Assisted reproductive technologies. B. Animals - Reproduction (human): internal structure of human testis and ovary, menstrual cycle, gametogenesis, embryonic development in mammals (up to three germ layers). Medical termination of pregnancy, infertility. Amniocentesis. Assisted reproductive technologies. B. Animals - Reproduction (human): internal structure of human testis and ovary, menstrual cycle, gametogenesis, embryonic development in mammals (up to three germ layers). Medical termination of pregnancy, infertility. Amniocentesis. Assisted reproductive technologies. B. Animals - Reproduction (human): internal structure of human testis and ovary, menstrual cycle, gametogenesis, embryonic development in mammals (up to three germ layers). Medical termination of pregnancy, infertility. Amniocentesis. Assisted reproductive technologies. B. Animals - Reproduction (human): internal structure of human testis and ovary, menstrual cycle, gametogenesis, embryonic development in mammals (up to three germ layers). Medical termination of pregnancy, infertility. Amniocentesis. Assisted reproductive technologies. B. Animals - Reproduction (human): internal structure of human testis and ovary, menstrual cycle, gametogenesis, embryonic development in mammals (up to three germ layers). Medical termination of pregnancy, infertility. Amniocentesis. Assisted reproductive technologies. B. Animals - Reproduction (human): internal structure of human testis and ovary, menstrual cycle, gametogenesis, embryonic development in mammals (up to three germ layers). Medical termination of pregnancy, infertility. Amniocentesis. Assisted reproductive technologies. B. Animals - Reproduction (human): internal structure of human testis and ovary, menstrual cycle, gametogenesis, embryonic development in mammals (up to three germ layers). Medical termination of pregnancy, infertility. Amniocentesis. Assisted reproductive technologies.